Nama : Oktavia Wulansari NPM : 50407647 Kelas : 4IA13
1. Apa yang dimaksud dengan komputasi modern ? 2. Jelaskan sejarah komputasi modern ? 3. Sebutkan contoh komputasi modern ? 4. Apa yang diketahui tentang komputasi parallel processing ? 5. Jelaskan hubungan parallel dengan processing ? 6. Definisi Bioinformatika menurut Fredj Tekaia dari Institut Pasteur [TEKAIA2004] 7. Jelaskan Bioinformatika dalam bidang klinis ? Jawaban
1.Arti dari komputasi yaitu untuk memecahkan suatu masalah dari data yang diinput dengan menggunakan suatu algoritma. Teori komputasi merupakan suatu sub-bidang dari ilmu komputer dan matematika. Aktivitas penggunaan dan pengembangan teknologi komputer, perangkat keras, dan perangkat lunak computer disebut Teknologi komputasi. Teknologi komputasi ini merupakan bagian spesifik komputer dari teknologi informasi.
Secara umum, ilmu komputasi adalah bidang ilmu yang mempunyai perhatian pada penyusunan model matematika teknik penyelesaian numerik serta penggunaan komputer untuk menganalisis dan memecahkan masalah – masalah ilmu (sains). Dalam penggunaan praktis, biasanya berupa penerapan simulasi komputer atau berbagai bentuk komputasi lainnya untuk menyelesaikan masalah – masalah dalam berbagai bidang keilmuan, tetapi dalam perkembangannya digunakan juga untuk menemukan prinsip – prinsip baru yang mendasar dalam ilmu. 2. Sejarah Komputasi Modern: John Von Neuman adalah seorang ilmuwan yang pertama kali mencetuskan dasar – dasar komputasi modern. Beliau lahir di Budapest, ibukota Hungaria pada 28 Desember 1903 dengan nama Neumann Janos.
Beliau merupakan anak pertama dari pasangan Neumann Miksa dan Kann Margit. Di sana, nama keluarga di letakkan di depan nama asli. Sehingga dalam bahasa Inggris, nama orang tuanya menjadi Max Neumann. Pada saat Max Neumann memperoleh gelar, maka namanya berubah menjadi Von Neumann. Kegeniusannya dalam Matematika telah terlihat semenjak kecil dengan mampu melakukan pembagian bilangan delapan digit (angka) di dalam kepalanya. Pada usia 17 tahun, Von Neumann sudah mempublikasikan paper-nya sendiri untuk Journal of the German Mathematical Society. Pada tahun 1926, Von Neumann lulus dengan dua gelar yaitu gelas S1 pada bidang teknik kimia dari ETH dan gelar doktor (Ph.D) pada bidang matematika dari Universitas Budapest. Semua itu di peroleh pada usia 23 tahun. Semasa hidupnya Von Neumann telah menjadi ilmuwan besar abad 21 dengan meningkatkan karya – karyanya tidak hanya dalam bidang matematika, teori kuantum dan game theory, namun juga fisika nuklir dan ilmu komputer. Beliau juga salah seorang ilmuwan yang berpengaruh dalam pembuatan bom atom di Los Alamos pada perang Dunia II. 3.Berikut ini beberapa contoh komputasi modern sampai dengan lahirnya ENIAC :
• Konrad Zuse’s electromechanical “Z mesin”.Z3 (1941) sebuah mesin pertama menampilkan biner aritmatika, termasuk aritmatika floating point dan ukuran programmability. Pada tahun 1998, Z3 operasional pertama di dunia komputer itu di anggap sebagai Turing lengkap.
• Non-programmable Atanasoff-Berry Computer yang di temukan pada tahun 1941 alat ini menggunakan tabung hampa berdasarkan perhitungan, angka biner, dan regeneratif memori kapasitor. Penggunaan memori regeneratif diperbolehkan untuk menjadi jauh lebih seragam (berukuran meja besar atau meja kerja).
• komputer Colossus ditemukan pada tahun 1943, berkemampuan untuk membatasi kemampuan program pada alat ini menunjukkan bahwa perangkat menggunakan ribuan tabung dapat digunakan lebih baik dan elektronik reprogrammable. Komputer ini digunakan untuk memecahkan kode perang Jerman.
• The Harvard Mark I ditemukan pada 1944, mempunyai skala besar, merupakan komputer elektromekanis dengan programmability terbatas.
• US Army’s Ballistic Research Laboratory ENIAC ditemukan pada tahun 1946, komputer ini digunakan unutk menghitung desimal aritmatika dan biasanya disebut sebagai tujuan umum pertama komputer elektronik (ENIAC merupaka generasi yang sudah sangat berkembang di zamannya sejak komputer pertama Konrad Zuse ’s Z3 yang ditemukan pada tahun 1941). 4. Pemrosesan Paralel yaitu pengolahan informasi yang menekankan pada manipulasi data-data elemen secara simultan, untuk mempercepat komputasi dari sistem komputer dan menambah jumlah keluaran yang dapat dihasilkan dalam jangka waktu tertentu. Komputer Paralel yaitu komputer yang memiliki kemampuan untuk melakukan pengolahan paralel. 5. Untuk melakukan perhitungan komputasi dengan menggunakan 2 atau lebih CPU/Processor dalam suatu komputer yang sama atau komputer yang berbeda dimana dalam hal ini setiap instruksi dibagi kedalam beberapa instruksi kemudian dikirim ke processor yang terlibat komputasi dan dilakukan secara bersamaan disebut dengan Parallel komputasi. Software yang betugas untuk pembagian proses komputasi digunakan Message Parsing Interface (MPI).
Ada dua teknik yang berbeda untuk mengakses data di unit memori, yaitu shared memory address dan message passing. Berdasarkan cara mengorganisasikan memori ini komputer paralel dibedakan menjadi shared memory parallel machine dan distributed memory parallel machine.
Prosesor dan memori ini didalam mesin paralel dapat dihubungkan (interkoneksi) secara statis maupun dinamis. Interkoneksi statis umumnya digunakan oleh distributed memory system (sistem memori terdistribusi). Interkoneksi dinamis umumnya menggunakan switch untuk menghubungkan antar prosesor dan memori.
Komunikasi data pada sistem paralel memori terdistribusi, memerlukan alat bantu komunikasi. Alat bantu yang sering digunakan oleh sistem seperti PC Jaringan pada saat ini adalah standar MPI (Message Passing Interface) atau standar PVM (Parallel Virtual Machine) yang keduanya bekerja diatas TCP/IP communication layer. Kedua standar ini memerlukan fungsi remote access agar dapat menjalankan program pada masing-masing unit prosesor.
Salah satu protocol yang dipergunakan pada komputasi parallel adalah Network File System (NFS), NFS adalah protokol yang dapat membagi sumber daya melalui jaringan. NFS dibuat untuk dapat independent dari jenis mesin, jenis sistem operasi, dan jenis protokol transport yang digunakan. Hal ini dilakukan dengan menggunakan RPC.
6. Definisi Bioinformatika menurut Fredj Tekaia dari Institut Pasteur [TEKAIA2004] adalah: "metode matematika, statistik dan komputasi yang bertujuan untuk menyelesaikan masalah-masalah biologi dengan menggunakan sekuen DNA dan asam amino dan informasi-informasi yang terkait dengannya."
7. Bioinformatika dalam bidang klinis sering disebut sebagai informatika klinis (clinical informatics). Aplikasi dari informatika klinis ini berbentuk manajemen data-data klinis dari pasien melalui Electrical Medical Record (EMR) yang dikembangkan oleh Clement J. McDonald dari Indiana University School of Medicine pada tahun 1972. McDonald pertama kali mengaplikasikan EMR pada 33 orang pasien penyakit gula (diabetes). Sekarang EMR ini telah diaplikasikan pada berbagai penyakit. Data yang disimpan meliputi data analisa diagnosa laboratorium, hasil konsultasi dan saran, foto rontgen, ukuran detak jantung, dan lain lain. Dengan data ini dokter akan bisa menentukan obat yang sesuai dengan kondisi pasien tertentu dan lebih jauh lagi, dengan dibacanya genom manusia, akan memungkinkan untuk mengetahui penyakit genetik seseorang, sehingga penanganan terhadap pasien menjadi lebih akurat.
Secara umum, Bioinformatika dapat digambarkan sebagai segala bentuk penggunaan komputer dalam menangani informasi-informasi biologi. Dalam prakteknya, definisi yang digunakan oleh kebanyakan orang bersifat lebih terperinci. Bioinformatika menurut kebanyakan orang adalah satu sinonim dari komputasi biologi molekul (penggunaan komputer dalam menandai karakterisasi dari komponen-komponen molekul dari makhluk hidup).
Pengertian Bioinformatika "klasik"
Sebagian besar ahli Biologi mengistilahkan ‘mereka sedang melakukan Bioinformatika’ ketika mereka sedang menggunakan komputer untuk menyimpan, melihat atau mengambil data, menganalisa atau memprediksi komposisi atau struktur dari biomolekul. Ketika kemampuan komputer menjadi semakin tinggi maka proses yang dilakukan dalam Bioinformatika dapat ditambah dengan melakukan simulasi. Yang termasuk biomolekul diantaranya adalah materi genetik dari manusia --asam nukleat-- dan produk dari gen manusia, yaitu protein. Hal-hal diataslah yang merupakan bahasan utama dari Bioinformatika "klasik", terutama berurusan dengan analisis sekuen (sequence analysis).
Definisi Bioinformatika menurut Fredj Tekaia dari Institut Pasteur [TEKAIA2004] adalah: "metode matematika, statistik dan komputasi yang bertujuan untuk menyelesaikan masalah-masalah biologi dengan menggunakan sekuen DNA dan asam amino dan informasi-informasi yang terkait dengannya."
Dari sudut pandang Matematika, sebagian besar molekul biologi mempunyai sifat yang menarik, yaitu molekul-molekul tersebut adalah polymer; rantai-rantai yang tersusun rapi dari modul-modul molekul yang lebih sederhana, yang disebut monomer. Monomer dapat dianalogikan sebagai bagian dari bangunan, dimana meskipun bagian- bagian tersebut berbeda warna dan bentuk, namun semua memiliki ketebalan yang sama dan cara yang sama untuk dihubungkan antara yang satu dengan yang lain. Monomer yang dapat dikombinasi dalam satu rantai ada dalam satu kelas umum yang sama, namun tiap jenis monomer dalam kelas tersebut mempunyai karakteristik masing-masing yang terdefinisi dengan baik.
Beberapa molekul-molekul monomer dapat digabungkan bersama membentuk sebuah entitas yang berukuran lebih besar, yang disebut macromolecule. Macromolecule dapat mempunyai informasi isi tertentu yang menarik dan sifat-sifat kimia tertentu. Berdasarkan skema di atas, monomer-monomer tertentu dalam macromolecule dari DNA dapat diperlakukan secara komputasi sebagai huruf-huruf dari alfabet, yang diletakkan dalam sebuah aturan yang telah diprogram sebelumnya untuk membawa pesan atau melakukan kerja di dalam sel.
Proses yang diterangkan di atas terjadi pada tingkat molekul di dalam sel. Salah satu cara untuk mempelajari proses tersebut selain dengan mengamati dalam laboratorium biologi yang sangat khusus adalah dengan menggunakan Bioinformatika sesuai dengan definisi "klasik" yang telah disebutkan di atas.
Pengertian Bioinformatika "baru"
Salah satu pencapaian besar dalam metode Bioinformatika adalah selesainya proyek pemetaan genom manusia (Human Genome Project). Selesainya proyek raksasa tersebut menyebabkan bentuk dan prioritas dari riset dan penerapan Bioinformatika berubah. Secara umum dapat dikatakan bahwa proyek tersebut membawa perubahan besar pada sistem hidup kita, sehingga sering disebutkan --terutama oleh ahli biologi-- bahwa kita saat ini berada di masa pascagenom.
Selesainya proyek pemetaan genom manusia ini membawa beberapa perubahan bagi Bioinformatika, diantaranya: Setelah memiliki beberapa genom yang utuh maka kita dapat mencari perbedaan dan persamaan di antara gen-gen dari spesies yang berbeda. Dari studi perbandingan antara gen-gen tersebut dapat ditarik kesimpulan tertentu mengenai spesies-spesies dan secara umum mengenai evolusi. Jenis cabang ilmu ini sering disebut sebagai perbandingan genom (comparative genomics).
Sekarang ada teknologi yang didisain untuk mengukur jumlah relatif dari kopi/cetakan sebuah pesan genetik (level dari ekspresi genetik) pada beberapa tingkatan yang berbeda pada perkembangan atau penyakit atau pada jaringan yang berbeda. Teknologi tersebut, contohnya seperti DNA microarrays akan semakin penting. Akibat yang lain, secara langsung, adalah cara dalam skala besar untuk mengidentifikasi fungsi-fungsi dan keterkaitan dari gen (contohnya metode yeast two- hybrid) akan semakin tumbuh secara signifikan dan bersamanya akan mengikuti Bioinformatika yang berkaitan langsung dengan kerja fungsi genom (functionalgenomics).
Akan ada perubahan besar dalam penekanan dari gen itu sendiri ke hasil-hasil dari gen. Yang pada akhirnya akan menuntun ke: usaha untuk mengkatalogkan semua aktivitas dan karakteristik interaksi antara semua hasil-hasil dari gen (pada manusia) yang disebut proteomics; usaha untuk mengkristalisasi dan memprediksikan struktur-struktur dari semua protein (pada manusia) yang disebut structural genomics.
Apa yang disebut orang sebagai research informatics atau medical informatics, manajemen dari semua data eksperimen biomedik yang berkaitan dengan molekul atau pasien tertentu --mulai dari spektroskop massal, hingga ke efek samping klinis-- akan berubah dari semula hanya merupakan kepentingan bagi mereka yang bekerja di perusahaan obat-obatan dan bagian TI Rumah Sakit akan menjadi jalur utama dari biologi molekul dan biologi sel, dan berubah jalur dari komersial dan klinikal ke arah akademis.
Dari uraian di atas terlihat bahwa Bioinformatika sangat mempengaruhi kehidupan manusia, terutama untuk mencapai kehidupan yang lebih baik. Penggunaan komputer yang notabene merupakan salah satu keahlian utama dari orang yang bergerak dalam TI merupakan salah satu unsur utama dalam Bioinformatika, baik dalam Bioinformatika "klasik" maupun Bioinformatika "baru".
Penggunaan Bioinformatika dalam Bidang Klinis
Bioinformatika dalam bidang klinis sering disebut sebagai informatika klinis (clinical informatics). Aplikasi dari informatika klinis ini berbentuk manajemen data-data klinis dari pasien melalui Electrical Medical Record (EMR) yang dikembangkan oleh Clement J. McDonald dari Indiana University School of Medicine pada tahun 1972. McDonald pertama kali mengaplikasikan EMR pada 33 orang pasien penyakit gula (diabetes). Sekarang EMR ini telah diaplikasikan pada berbagai penyakit. Data yang disimpan meliputi data analisa diagnosa laboratorium, hasil konsultasi dan saran, foto rontgen, ukuran detak jantung, dan lain lain. Dengan data ini dokter akan bisa menentukan obat yang sesuai dengan kondisi pasien tertentu dan lebih jauh lagi, dengan dibacanya genom manusia, akan memungkinkan untuk mengetahui penyakit genetik seseorang, sehingga penanganan terhadap pasien menjadi lebih akurat.
Penggunaan Bioinformatika untuk Identifikasi Agent Penyakit Baru
Bioinformatika juga menyediakan tool yang sangat penting untuk identifikasi agent penyakit yang belum dikenal penyebabnya. Banyak sekali penyakit baru yang muncul dalam dekade ini, dan diantaranya yang masih hangat adalah SARS (Severe Acute Respiratory Syndrome).
Pada awalnya, penyakit ini diperkirakan disebabkan oleh virus influenza karena gejalanya mirip dengan gejala pengidap influenza. Akan tetapi ternyata dugaan ini salah karena virus influenza tidak terisolasi dari pasien. Perkirakan lain penyakit ini disebabkan oleh bakteri Candida karena bakteri ini terisolasi dari beberapa pasien. Tapi perkiraan ini juga salah. Akhirnya ditemukan bahwa dari sebagian besar pasien SARS terisolasi virus Corona jika dilihat dari morfologinya. Sekuen genom virus ini kemudian dibaca dan dari hasil analisa dikonfirmasikan bahwa penyebab SARS adalah virus Corona yang telah berubah (mutasi) dari virus Corona yang ada selama ini.
Dalam rentetan proses ini, Bioinformatika memegang peranan penting. Pertama pada proses pembacaan genom virus Corona. Karena di database seperti GenBank, EMBL (European Molecular Biology Laboratory), dan DDBJ (DNA Data Bank of Japan) sudah tersedia data sekuen beberapa virus Corona, yang bisa digunakan untuk mendisain primer yang digunakan untuk amplifikasi DNA virus SARS ini. Software untuk mendisain primer juga tersedia, baik yang gratis maupun yang komersial. Contoh yang gratis adalah Webprimer yang disediakan oleh Stanford Genomic Resources (http://genome-www2.stanford.edu/cgi-bin/SGD/web-primer), yang GeneWalker disediakan oleh Cybergene AB (http://www.cybergene.se/primerdisain/genewalker), dan lain sebagainya. Untuk yang komersial ada Primer Disainer yang dikembangkan oleh Scientific & Education Software, dan software-software untuk analisa DNA lainnya seperti Sequencher (GeneCodes Corp.), SeqMan II (DNA STAR Inc.), Genetyx (GENETYX Corp.), DNASIS (HITACHI Software), dan lain lain.
Kedua pada proses mencari kemiripan sekuen (homology alignment) virus yang didapatkan dengan virus lainnya. Dari hasil analisa virus SARS diketahui bahwa genom virus Corona penyebab SARS berbeda dengan virus Corona lainnya. Perbedaan ini diketahui dengan menggunakan homology alignment dari sekuen virus SARS. Selanjutnya, Bioinformatika juga berfungsi untuk analisa posisi sejauh mana suatu virus berbeda dengan virus lainnya.
Penggunaan Bioinformatika untuk Diagnosa Penyakit Baru
Untuk menangani penyakit baru diperlukan diagnosa yang akurat sehingga dapat dibedakan dengan penyakit lain. Diagnosa yang akurat ini sangat diperlukan untuk pemberian obat dan perawatan yang tepat bagi pasien.
Ada beberapa cara untuk mendiagnosa suatu penyakit, antara lain: isolasi agent penyebab penyakit tersebut dan analisa morfologinya, deteksi antibodi yang dihasilkan dari infeksi dengan teknik enzyme-linked immunosorbent assay (ELISA), dan deteksi gen dari agent pembawa penyakit tersebut dengan Polymerase Chain Reaction (PCR).
Teknik yang banyak dan lazim dipakai saat ini adalah teknik PCR. Teknik ini sederhana, praktis dan cepat. Yang penting dalam teknik PCR adalah disain primer untuk amplifikasi DNA, yang memerlukan data sekuen dari genom agent yang bersangkutan dan software seperti yang telah diuraikan di atas. Disinilah Bioinformatika memainkan peranannya. Untuk agent yang mempunyai genom RNA, harus dilakukan reverse transcription (proses sintesa DNA dari RNA) terlebih dahulu dengan menggunakan enzim reverse transcriptase. Setelah DNA diperoleh baru dilakukan PCR. Reverse transcription dan PCR ini bisa dilakukan sekaligus dan biasanya dinamakan RT-PCR.
Teknik PCR ini bersifat kualitatif, oleh sebab itu sejak beberapa tahun yang lalu
dikembangkan teknik lain, yaitu Real Time PCR yang bersifat kuantitatif. Dari hasil Real
Time PCR ini bisa ditentukan kuantitas suatu agent di dalam tubuh seseorang, sehingga
bisa dievaluasi tingkat emergensinya. Pada Real Time PCR ini selain primer diperlukan
probe yang harus didisain sesuai dengan sekuen agent yang bersangkutan. Di sini juga
diperlukan software atau program Bioinformatika.
Penggunaan Bioinformatika untuk Penemuan Obat
Cara untuk menemukan obat biasanya dilakukan dengan menemukan zat/senyawa yang dapat menekan perkembangbiakan suatu agent penyebab penyakit. Karena perkembangbiakan agent tersebut dipengaruhi oleh banyak faktor, maka faktor-faktor inilah yang dijadikan target. Diantaranya adalah enzim-enzim yang diperlukan untuk perkembangbiakan suatu agent Mula-mula yang harus dilakukan adalah analisa struktur dan fungsi enzim-enzim tersebut. Kemudian mencari atau mensintesa zat/senyawa yang dapat menekan fungsi dari enzim-enzim tersebut.
Analisa struktur dan fungsi enzim ini dilakukan dengan cara mengganti asam amino tertentu dan menguji efeknya. Analisa penggantian asam amino ini dahulu dilakukan secara random sehingga memerlukan waktu yang lama. Setelah Bioinformatika berkembang, data-data protein yang sudah dianalisa bebas diakses oleh siapapun, baik data sekuen asam amino-nya seperti yang ada di SWISS-PROT (http://www.ebi.ac.uk/swissprot/) maupun struktur 3D-nya yang tersedia di Protein Data Bank (PDB) (http://www.rcsb.org/pdb/). Dengan database yang tersedia ini, enzim yang baru ditemukan dapat dibandingkan sekuen asam amino-nya, sehingga bisa diperkirakan asam amino yang berperan untuk aktivitas (active site) dan kestabilan enzim tersebut.
Setelah asam amino yang berperan sebagai active site dan kestabilan enzim tersebut ditemukan, kemudian dicari atau disintesa senyawa yang dapat berinteraksi dengan asam amino tersebut. Dengan data yang ada di PDB, maka dapat dilihat struktur 3D suatu enzim termasuk active site-nya, sehingga bisa diperkirakan bentuk senyawa yang akan berinteraksi dengan active site tersebut. Dengan demikian, kita cukup mensintesa senyawa yang diperkirakan akan berinteraksi, sehingga obat terhadap suatu penyakit akan jauh lebih cepat ditemukan. Cara ini dinamakan “docking” dan telah banyak digunakan oleh perusahaan farmasi untuk penemuan obat baru.
Meskipun dengan Bioinformatika ini dapat diperkirakan senyawa yang berinteraksi dan menekan fungsi suatu enzim, namun hasilnya harus dikonfirmasi dahulu melalui eksperimen di laboratorium. Akan tetapi dengan Bioinformatika, semua proses ini bisa dilakukan lebih cepat sehingga lebih efisien baik dari segi waktu maupun finansial.
Tahun 1997, Ian Wilmut dari Roslin Institute dan PPL Therapeutics Ltd, Edinburgh, Skotlandia, berhasil mengklon gen manusia yang menghasilkan faktor IX (faktor pembekuan darah), dan memasukkan ke kromosom biri-biri. Diharapkan biri-biri yang selnya mengandung gen manusia faktor IX akan menghasilkan susu yang mengandung faktor pembekuan darah. Jika berhasil diproduksi dalam jumlah banyak maka faktor IX yang diisolasi dari susu harganya bisa lebih murah untuk membantu para penderita hemofilia.
Program-program Bioinformatika
Sehari-harinya bionformatika dikerjakan dengan menggunakan program pencari sekuen (sequence search) seperti BLAST, program analisa sekuen (sequence analysis) seperti EMBOSS dan paket Staden, program prediksi struktur seperti THREADER atau PHD atau program imaging/modelling seperti RasMol dan WHATIF. Contoh-contoh di atas memperlihatkan bahwa telah banyak program pendukung yang mudah di akses dan dipelajari untuk menggunakan Bioinformatika
Kondisi Bioinformatika di Indonesia
Di Indonesia, Bioinformatika masih belum dikenal oleh masyarakat luas. Hal ini dapat dimaklumi karena penggunaan komputer sebagai alat bantu belum merupakan budaya. Bahkan di kalangan peneliti sendiri, barangkali hanya para peneliti biologi molekul yang sedikit banyak mengikuti perkembangannya karena keharusan menggunakan perangkat-perangkat Bioinformatika untuk analisa data. Sementara di kalangan TI masih kurang mendapat perhatian.
Ketersediaan database dasar (DNA, protein) yang bersifat terbuka/gratis merupakan peluang besar untuk menggali informasi berharga daripadanya. Database genom manusia sudah disepakati akan bersifat terbuka untuk seluruh kalangan, sehingga dapat digali/diketahui kandidat-kandidat gen yang memiliki potensi kedokteran/farmasi. Dari sinilah Indonesia dapat ikut berperan mengembangkan Bioinformatika. Kerjasama antara peneliti bioteknologi yang memahami makna biologis data tersebut dengan praktisi TI seperti programmer, dan sebagainya akan sangat berperan dalam kemajuan Bioinformatika Indonesia nantinya.
Penerapan Bioinformatika di Indonesia
Sebagai kajian yang masih baru, Indonesia seharusnya berperan aktif dalam mengembangkan Bioinformatika ini. Paling tidak, sebagai tempat tinggal lebih dari 300 suku bangsa yang berbeda akan menjadi sumber genom, karena besarnya variasi genetiknya. Belum lagi variasi species flora maupun fauna yang berlimpah.
Memang ada sejumlah pakar yang telah mengikuti perkembangan Bioinformatika ini, misalnya para peneliti dalam Lembaga Biologi Molekul Eijkman. Mereka cukup berperan aktif dalam memanfaatkan kajian Bioinformatika. Bahkan, lembaga ini telah memberikan beberapa sumbangan cukup berarti, antara lain: Deteksi Kelainan Janin, Pengembangan Vaksin Hepatitis B Rekombinan, dan Meringankan Kelumpuhan dengan Rekayasa RNA.
Paralel prosessing komputasi adalah proses atau pekerjaan komputasi di komputer dengan memakai suatu bahasa pemrograman yang dijalankan secara paralel pada saat bersamaan. Secara umum komputasi paralel diperlukan untuk meningkatkan kecepatan komputasi bila dibandingkan dengan pemakaian komputasi pada komputer tunggal.
Penggunaan komputasi parallel prosessing merupakan pilihan yang cukup handal untuk saat ini untuk pengolahan data yang besar dan banyak, hal ini apabila dibandingkan dengan membeli suatu super komputer yang harganya sangat mahal maka penggunaan komputasi parallel prosessing merupakan pilihan yang sangat tepat untuk pengolahan data tersebut.
Aspek keamanan merupakan suatu aspek penting dalam sistem parallel prosessing komputasi ini, karena didalam sistem akan banyak berkaitan dengan akses data, hak pengguna, keamanan data, keamanan jaringan terhadap peyerangan sesorang atau bahkan virus sehingga akan menghambat kinerja dari system komputasi ini.
Parallel komputasi adalah melakukan perhitungan komputasi dengan menggunakan 2 atau lebih CPU/Processor dalam suatu komputer yang sama atau komputer yang berbeda dimana dalam hal ini setiap instruksi dibagi kedalam beberapa instruksi kemudian dikirim ke processor yang terlibat komputasi dan dilakukan secara bersamaan. Untuk proses pembagian proses komputasi tersebut dilakukan oleh suatu software yang betugas untuk mengatur komputasi dalam hal makalah ini akan digunakan Message Parsing Interface (MPI).
Berikut ini adalah gambar perbedaa antara komputasi tunggal dengan parallel komputasi :
a) komputasi tunggal/serial
b) komputasi parallel
Perbandingan antara serial komputasi dan parallel komputasi
Pada sistem komputasi parallel terdiri dari beberapa unit prosesor dan beberapa unit memori. Ada dua teknik yang berbeda untuk mengakses data di unit memori, yaitu shared memory address dan message passing. Berdasarkan cara mengorganisasikan memori ini komputer paralel dibedakan menjadi shared memory parallel machine dan distributed memory parallel machine.
Prosesor dan memori ini didalam mesin paralel dapat dihubungkan (interkoneksi) secara statis maupun dinamis. Interkoneksi statis umumnya digunakan oleh distributed memory system (sistem memori terdistribusi). Sambungan langsung peer to peer digunakan untuk menghubungkan semua prosesor. Interkoneksi dinamis umumnya menggunakan switch untuk menghubungkan antar prosesor dan memori.
Komunikasi data pada sistem paralel memori terdistribusi, memerlukan alat bantu komunikasi. Alat bantu yang sering digunakan oleh sistem seperti PC Jaringan pada saat ini adalah standar MPI (Message Passing Interface) atau standar PVM (Parallel Virtual Machine)yang keduanya bekerja diatas TCP/IP communication layer. Kedua standar ini memerlukan fungsi remote access agar dapat menjalankan program pada masing-masing unit prosesor.
Salah satu protocol yang dipergunakan pada komputasi parallel adalah Network File System (NFS), NFS adalah protokol yang dapat membagi sumber daya melalui jaringan. NFS dibuat untuk dapat independent dari jenis mesin, jenis sistem operasi, dan jenis protokol transport yang digunakan. Hal ini dilakukan dengan menggunakan RPC. NFS memperbolehkan user yang telah diijinkan untuk mengakses file-file yang berada di
remote host seperti mengakses file yang berada di lokal. Protokol yang digunakan protokol mount menentukan host remote dan jenis file sistem yang akan diakses dan menempatkan di suatu direktori, protokol NFS melakukan I/O pada remote file system. Protokol mount dan protokol NFS bekerja dengan menggunakan RPC dan mengiri dengan protokol TCP dan UDP. Kegunaan dari NFS pada komputasi parallel adalah untuk melakukan sharing data sehingga setiap node slave dapat mengakses program yang sama pada node master.
Software yang diperlukan untuk Parallel komputasi adalah PGI CDK, dimana aplikasi ini telah dilengkapi dengan Cluster Development Kit dimana software ini telah memiliki feature yang lengkap bila ingin melakukan komputasi dengan parallel prosessing karena software ini telah mensupport MPI untuk melakukan perhitungan komputasi.
Kesimpulan :
1. Parallel Komputasi dengan menggunakan PC Cluster merupakan salah satu solusi untuk melakukan komputasi dalam jumlah yang besar, sehingga perlu dilakukan management sistem keamanan yang ada pada PC Cluster tersebut.
2. Solusi PC Cluster dengan menggunakan diskless merupakan salah satu solusi untuk yang aman dalam melakukan parallel komputasi, karena semua data tersimpan pada server master node yang system keamanannya sangat terjaga dan terlindung.
3. Pengamanan Sistem PC Cluster untuk parallel komputasi masih banyak metode yang dapat digunakan, misalkan tcpwraper untuk penanganan service dan hak akses, selain itu juga pengamanan shell dilakukan dengan melakukan setting path-path untuk hak aksesnya, sehingga tidak semua user dapat melakukan proses komputasi.
sumber : www.cert.or.id/~budi/courses/security/…/Report-Deni-Wahyudi.doc
Untuk meningkatkan kecepatan proses komputasi, dapat ditempuh dua cara :
1. peningkatan kecepatan perangkat keras,
2. peningkatan kecepatan perangkat lunak.
Komponen utama perangkat keras komputer adalah processor. Saat ini, peningkatan kecepatan processor benarbenar luar biasa. Processor Pentium 4 yang dikeluarkan Intel kecepatannya sudah mencapai 1.8 GHz. Meskipun kecepatan processor dapat ditingkatkan terus, namun karena keterbatasan materi pembuatnya, tentu ada suatu batas kecepatan yang tak mungkin lagi dapat dilewati. Karena itu timbul ide pembuatan komputer multiprocessor.
Peningkatan kecepatan setiap proses bisa dicapai melalui peningkatan kecepatan perangkat lunak. Kecepatan perangkat lunak sangat ditentukan oleh algoritmanya. Usaha untuk mencari algoritma yang lebih cepat tidaklah
mudah, namun dengan adanya komputer multiprocessor, dapatlah dirancang algoritma yang lebih cepat, yaitu dengan
memparalelkan proses komputasinya. Algoritma paralel saat ini masih sukar diimplementasikan. Untuk mengatasinya dirancanglah mesin paralel semu. Mesin paralel semu ini sebenarnya adalah jaringan komputer yang dikendalikan oleh sebuah perangkat lunak yang mampu mengatur pengalokasian proses-proses komputasi kepada processor-processor yang tersebar dalam jaringan tersebut.
PVM
Parallel Virtual Machine (PVM) PVM adalah suatu perangkat lunak yang mampu mensimulasikan pemrosesan paralel pada jaringan komputer. Saat ini ada dua bahasa pemrograman yang didukung oleh PVM, yaitu FORTRAN dan C. Versi PVM yang paling umum digunakan berbasis UNIX, meskipun ada juga PVM berbasis Windows. Cara kerja PVM adalah dengan membuat (spawning) proses-proses anak yang akan dikirim ke processor-processor yang tersebar di jaringan komputer. Dengan PVM bisa ditentukan berapa jumlah processor yang akan dilibatkan dalam proses komputasi.
Untuk menjumlahkan n buah bilangan, terdapat satu syarat yaitu n adalah bilangan yang merupakan hasil perpangkatan dari 2 (power of 2). Cara kerja algoritma penjumlahan paralel dapat dilihat pada contoh berikut ini.
Pada contoh ini akan dijumlahkan 8 buah data (1+2+…+8). Untuk itu diperlukan 4 buah prosesor.
While loop akan berhenti dieksekusi bila k = 0, berarti bergantung
dari k. Karena pada setiap akhir eksekusi while loop, nilai k akan dibagi 2, maka waktu eksekusinya adalah O (log n). Dengan demikian peningkatan yang diperoleh dengan memparalelkan penjumlahan adalah O(n/log n). Untuk mengimplementasikan algoritma di atas idealnya dibutuhkan n/2 processor. Dengan teknik-teknik pemrograman paralel, algoritma di atas bisa diimplementasikan dengan jumlah processor kurang dari n/2.
Bitonic Sort
Bitonic Sort adalah suatu algoritma pengurutan paralel menggunakan sorting network. Komponen terkecil dari sorting network adalah comparator, yaitu suatu perangkat dengan dua masukan, x dan y, dan dua keluaran, x’ dan y’, di mana x’ = min(x,y) dan y’ = max(x,y).
Dengan menghubungkan sejumlah comparator dengan kabel, dapat dibentuk sebuah comparison network.Sebuah sorting network adalah comparison network di mana untuk sembarang masukan akan menghasilkan keluaran yang terurut menaik (b1≤ b2 ≤ … ≤ bn). Suatu bitonic sequence adalah suatu sequence yang terurut menaik kemudian terurut menurun atau terurut menurun kemudian menaik. Sequence <1,4,6,8,3,2> dan <9,8,3,2,4,6> adalah
contoh bitonic sequence. Suatu half cleaner adalah comparison network dengan kedalaman 1 di mana masukan ke-i akan dibandingkan dengan masukan ke-(i+n/2) untuk i = 1,2,…,n/2. Dengan menggunakan half cleaner dapat dibentuk Bitonic Sorter.
Solusinya adalah T(n) = O(log n). Jadi waktu eksekusi Bitonic Sorter(n) = O(log n). Tahap berikutnya dari pembuatan sorting network tersebut adalah membentuk network yang mampu menggabungkan dua sequence berukuran n/2 yang sudah terurut menaik, menjadi sebuah sequence berukuran n yang terurut menaik. Ini disebut merging network. kesimpulannya, untuk penjumlahan paralel waktu eksekusinya adalah O(log n) sedangkan bitonic sort waktu eksekusinya adalah O(log 2 n).
sumber : ajuarna.staff.gunadarma.ac.id/Downloads/files/…/ArtikelEpilog.pdf
Komputasi sebenarnya bisa diartikan sebagai cara untuk menemukan pemecahan masalah dari data input dengan menggunakan suatu algoritma. Komputasi merupakan suatu sub-bidang dari ilmu komputer dan matematika. Selama ribuan tahun, perhitungan dan komputasi umumnya dilakukan dengan menggunakan pena dan kertas, atau kapur dan batu tulis, atau dikerjakan secara mental, kadang-kadang dengan bantuan suatu tabel. Namun sekarang, kebanyakan komputasi telah dilakukan dengan menggunakan komputer.
Secara umum ilmu komputasi adalah bidang ilmu yang mempunyai perhatian pada penyusunan model matematika teknik penyelesaian numerik serta penggunaan komputer untuk menganalisis dan memecahkan masalah-masalah ilmu (sains). Dalam penggunaan praktis, biasanya berupa penerapan simulasi komputer atau berbagai bentuk komputasi lainnya untuk menyelesaikan masalah-masalah dalam berbagai bidang keilmuan, tetapi dalam perkembangannya digunakan juga untuk menemukan prinsip-prinsip baru yang mendasar dalam ilmu.
Bidang ini berbeda dengan ilmu komputer (computer science), yang mengkaji komputasi, komputer dan pemrosesan informasi. Bidang ini juga berbeda dengan teori dan percobaan sebagai bentuk tradisional dari ilmu dan kerja keilmuan. Dalam ilmu alam, pendekatan ilmu komputasi dapat memberikan berbagai pemahaman baru, melalui penerapan model-model matematika dalam program komputer berdasarkan landasan teori yang telah berkembang, untuk menyelesaikan masalah-masalah nyata dalam ilmu tersebut.
Dalam kerjanya komputasi modern menghitung dan mencari solusi dari masalah yang ada, dan perhitungan yang dilakukan itu meliputi: 1. Kompleksitas (Menggunakan Teori big O)) 2. Modeling (NN & GA)3. Akurasi (big, Floating point)
3. Akurasi ( big, floating point ) 4. Kecepatan (dalam satuan Hz)
5. Problem Volume Besar (Down Sizzing atau pararel)
John Von Neumann
John von Neumann (1903-1957) adalah seorang ilmuan yang meletakkan dasar-dasar komputer modern. Ia di sebut sebagai Bapak Komputasi Modern. Von Neumann dilahirkan di Budapest, ibu kota Hungaria, pada 28 Desember 1903 dengan nama Neumann Janos. Dia adalah anak pertama dari pasangan Neumann Miksa dan Kann Margit. Di sana, nama keluarga diletakkan di depan nama asli. Sehingga dalam bahasa Inggris, nama orang tuanya menjadi Max Neumann dan Margaret Kann. Max Neumann memperoleh gelar dan namanya berubah menjadi Von Neumann. Max Neumann adalah seorang Yahudi Hungaria yang bergelar doktor dalam ilmu hukum. Dia juga seorang pengacara untuk sebuah bank. Pada tahun 1903, Budapest terkenal sebagai tempat lahirnya para manusia genius dari bidang sains, penulis, seniman dan musisi.
Von Neumann juga belajar di Berlin dan Zurich dan mendapatkan diploma pada bidang teknik kimia pada tahun 1926. Pada tahun yang sama dia mendapatkan gelar doktor pada bidang matematika dari Universitas Budapest. Keahlian Von Neumann terletak pada bidang teori game yang melahirkan konsep seluler automata, teknologi bom atom, dan komputasi modern yang kemudian melahirkan komputer. Kegeniusannya dalam matematika telah terlihat semenjak kecil dengan mampu melakukan pembagian bilangan delapan digit (angka) di dalam kepalanya.
Setelah mengajar di Berlin dan Hamburg, Von Neumann pindah ke Amerika pada tahun 1930 dan bekerja di Universitas Princeton serta menjadi salah satu pendiri Institute for Advanced Studies.
Pada tugas mata kuliah Softskill, saya akan membahas mengenai BCD.
Definisi Business Content Development
Apa sih BCD itu ?? BCD singkatan dari Business Content Development. bahasa lainnya berarti pengembangan bisnis konten. Dalam ilmu ekonomi, bisnis adalah suatu organisasi yang menjual barang atau jasa kepada konsumen atau bisnis lainnya, untuk mendapatkan laba. Secara historis kata bisnis dari bahasa inggris business, dari kata dasar busy yang berarti "sibuk" dalam konteks individu, komunitas, ataupun masyarakat. Dalam artian, sibuk mengerjakan aktivitas dan pekerjaan yang mendatangkan keuntungan. Konten adalah kunci di balik keberhasilan bisnis Online. Mungkin konten merupakan hal pertama dan terpenting yang membuat dampak positif atau negatif pada pikiran pengunjung sebuah halaman web. Konten dapat membantu pengunjung terlibat dalam sebuah halaman web, blog, majalah online maupun newsletter jika digunakan dengan cara yang tepat.
Pengembangan bisnis konten dilakukan agar pengunjung atau user dapat lebih tertarik dengan web tersebut. Perkembangan konten seiring perkembangan dari suatu trend maupun mode dalam sehari - hari, sehingga beberapa kalangan memanfaatkan keadaan yang ada agar menjadi bisnis yang menjanjikan.
Pentingnya konten dalam sebuah website dapat memenuhi kebutuhan pengembangan isi (content) website bagi website Anda.
Layanan konten meliputi:
1. Penulisan Artikel atau Berita (copywriting)
Jika Anda membutuhkan artikel atau berita untuk memperkaya konten website Anda, maka Anda akan memerlukan layanan ini.
·Tata bahasa yang baik dan benar.
·Menggunakan gaya bahasa yang profesional sesuai dengan tema dari tulisan yang dibuat.
·Berasal dari sumber yang dapat dipercaya dan dapat dipertanggungjawabkan.
2. Penulisan E-zine
E-zine, atau electronic magazine, merupakan layanan yang membantu Anda untuk mempublikasikan tulisan Anda dalam bentuk digital. Sehingga membutuhkan biaya yang lebih murah dan dapat diakses oleh seluruh dunia.
3. Penulisan Newsletter
Newsletter akan mempererat hubungan Anda dengan klien atau mitra Anda. Oleh karena itu kami menyediakan layanan penulisan newsletter yang berkualitas dan informatif untuk memenuhi kebutuhan Anda.
4. Pembuatan media untuk banner iklan
Media yang dihasilkan berupa gambar statis, gambar bergerak, animasi flash dan sebagainya